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Abstract

The statistical modeling of social network data is difficult due to the complex dependence
structure of the tie variables. Statistical exponential families of distributions provide a
flexible way to model such dependence. They enable the statistical characteristics of the
network to be encapsulated within an exponential family random graph (ERG) model. For
a long time, however, likelihood-based estimation was only feasible for ERG models assuming
dyad independence. For more realistic and complex models inference has been based on the
pseudo-likelihood. Recent advances in computational methods have made likelihood-based
inference practical, and comparison of the different estimators possible.

In this paper, we compare the bias, standard errors, coverage rates and efficiency of max-
imum likelihood and maximum pseudo-likelihood estimators. We also propose an improved
pseudo-likelihood estimation method aimed at reducing bias. The comparison is performed
using simulated social network data based on two versions of an empirically realistic net-
work model, the first representing Lazega’s law firm data and the second a modified version
with increased dependency. We consider estimation of both the natural parameters and the
mean-value parameters.

The results clearly show the superiority of the likelihood-based estimators over those
based on pseudo-likelihood. The use of the mean value parameterization provides insight
into the differences between the estimators and when these differences will matter in practice.

KEY WORDS: exponential family random graph model; networks; maximum likelihood es-
timation; maximum pseudo likelihood estimation; dyad dependence; mean
value parameterization; Markov Chain Monte Carlo



1 Introduction

Maximum likelihood estimation of exponential family random graph (ERG) models is com-

plicated because the likelihood function is difficult to compute for models and networks of

reasonable size (e.g., networks with 30 or more actors and models of dyad dependence).

Until recently inference for ERG models has been almost exclusively based on a local al-

ternative to the likelihood function referred to as the pseudo-likelihood (Strauss and Ikeda,

1990). This was originally motivated by (and developed for) spatial models by Besag (1975),

and extended as an alternative to maximum likelihood estimation for networks (Frank and

Strauss, 1986; Strauss and Ikeda, 1990; Frank, 1991), (see also Wasserman and Pattison,

1996; Wasserman and Robins, 2004; Besag, 2000). The computational tractability of the

pseudo-likelihood function makes it an attractive alternative to the full likelihood function.

In recent years much progress has been made in likelihood-based inference for ERG

models by the application of Markov Chain Monte Carlo (MCMC) algorithms (Geyer and

Thompson, 1992; Crouch et al., 1998; Corander et al., 1998, 2002; Handcock, 2002; Snijders,

2002; Hunter and Handcock, 2006). At the same time we have gained a far better under-

standing of the problem of degeneracy (Snijders, 2002; Handcock, 2003; Snijders et al., 2006;

Robins et al., 2007).

Since ERG models are within the exponential family class, the properties of their max-

imum likelihood estimator (MLE) have been studied, although little is available on their

application to network models. Little is known about the behavior of the maximum pseudo-

likelihood estimator (MPLE), and how these compare with the MLE. Corander et al. (1998)

investigate maximum likelihood estimation of a specific type of exponential family random

graph model (with the number of two-stars and triangles as sufficient statistics) and com-

pare them to MPLE in two ways. First, they consider small graphs with fixed sufficient

statistics and compare the actual MLE (determined by full enumeration), estimated MLE,

and MPLE estimates, and conclude that the MPLE estimates appear biased. They also con-

sider graphs with fixed edge counts generated by a model with known clustering parameter.

They estimate this known parameter using MLE and MPLE and conclude that outside the

unstable region of the MLE, MPLE is more biased than MLE where this difference is smaller

for larger networks (40-100 nodes). Wasserman and Robins (2004) argue that the MPLE

is intrinsically highly dependent on the observed network and, consequently, may result in

substantial bias in the parameter estimates for certain networks.

Lubbers and Snijders (2006) investigated the behavior of MPLE and MLE in several

specifications of the ERG model. Their work is not a simulation study but can be charac-

terized as a meta analysis of a large number of same gender social networks of adolescents.
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Lubbers and Snijders (2006) conclude that although the behavior of MPLE and MLE can

be quite divergent in a particular social network, the overall conclusion obtained in the meta

analysis of all models is not seriously affected by the estimation method.

Approaches to avoid the problem of ERG model degeneracy and associated estimation

problems include the use of new network statistics (Snijders et al., 2006; Hunter and Hand-

cock, 2006) in the ERG model specification. Handcock (2003) proposed mean value pa-

rameterization as an alternative to the common natural parameterization to enhance the

understanding of the degeneracy problem.

Because the pseudo-likelihood can be expected to ignore at least part of the dependence

structure of the social network, it is generally assumed that inference based on the pseudo-

likelihood is problematic. Of particular concern is the underestimation of the standard errors

(cf. Wasserman and Robins, 2004). Moreover, it has the undesirable property of sometimes

resulting in infinite estimates (manifested by reported estimates that have numerically large

magnitude). Handcock (2003) shows that, under certain conditions, if the MPLE is finite,

it is also unique. Corander et al. (1998) however, found considerable variability and bias in

the MPLE of the effects of the number of 2-stars and the number of triangles in relatively

small undirected networks with a fixed number of edges. They also showed that the bias

and mean-squared error of MLE are associated with the size of the parameter values, as is

typical for parameter configurations where model degeneracy may become a problem.

For dyad independence models the likelihood and pseudo-likelihood functions coincide (if

the pseudo-likelihood function is defined at the dyad-level). The common assumption then

is that the estimates will diverge as the dependence among the dyads increases. It is also

commonly presumed that differences between the estimators will be smaller for actor (or

dyadic) covariate effects than for structural network effects, such as the number of transitive

triads. Moreover, if the dependence in the network is relatively low, the MPLE may be a

reasonable estimate. In analyzes of social network data with many possible (actor) covariates,

the easily and quickly obtained MPLE may provide a good starting point.

The purpose of this paper is to study and compare the properties of MPLE and MLE in

a case study of a known well-behaved model analyzing part of the data collected by Lazega

(2001) and a derived model with higher dyad dependence. We also propose and analyze the

properties of a modified MPLE designed to reduce bias in generalized linear models (Firth,

1993). A second goal of the paper is to investigate the difference between the natural and

mean-value parameterization of the ERG model. After introducing the exponential family

random graph model in both parameterizations, the study design is presented in detail in

the third section. The results of the comparison are given in Section 4. The paper concludes

with a discussion and recommendations.
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2 Exponential Family Random Graph Models

Let the random matrix Y represent the adjacency matrix of an unvalued network on n

individuals. We assume that the diagonal elements of Y are 0 – that self-partnerships are

disallowed. Suppose that Y denotes the set of all possible networks on the given n individuals.

The multivariate distribution of Y can be parameterized in the form:

Pη,Y(Y = y) =
exp [η · Z(y)]

c(η,Y)
y ∈ Y (1)

where η ∈ Υ ⊆ Rq is the model parameter and Z:Y → Rq are statistics based on the

adjacency matrix (Frank and Strauss, 1986; Handcock, 2002).

This model is an exponential family of distribution with natural parameter η and suffi-

cient statistics Z(Y ). There is an extensive literature on descriptive statistics for networks

(Wasserman and Faust, 1994; Borgatti et al., 1999).

These statistics are often crafted to capture features of the network (e.g., centrality,

mutuality and betweenness) of primary substantive interest to the researcher. In many

situations the researcher has specified a set of statistics based on substantive theoretical

considerations. The above model then has the property of maximizing the entropy within

the family of all distributions with given expectation of Z(Y ) (Barndorff-Nielsen, 1978).

Paired with the flexibility of the choice of Z this property does provide some justification

for the model (1) that will vary from application to application.

The denominator c(η,Y) is the normalizing function that ensures the distribution sums

to one: c(η,Y) =
∑
y∈Y

exp [η · Z(y)]. This factor varies with both η and the support Y and is

the primary barrier to simulation and inference under this modeling scheme.

ERG models have usually been expressed in their natural parameterization η. Here we

also consider the alternative mean value parameterization for the model: µ : Υ→ C defined

by

µ(η) = Eη [Z(Y )] (2)

where C is the relative interior of the convex hull of the sample space of Z(Y ). In the mean

value parameterization, the natural parameter η is replaced by µ(η), as the expected value of

the sufficient statistic Z(Y ) under the model with natural parameter η. The range of µ, µ(η),

is C (Barndorff-Nielsen, 1978). One advantage of the mean value parameterization is that

from the researcher’s perspective it is actually more “natural” than the η parameterization

because it is defined on the scale of network statistics. See Handcock (2003) for details.
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2.1 Illustration for the Rényi-Erdős Model

A directed Rényi-Erdős network is generated by an ERG model for n actors with one model

term capturing the density D of arcs,

Pθ(Y = y) =
exp(θD(y))

c(θ)

with D(y) = 1
N

∑
i 6=j yij. and N = n(n−1), the number of possible ties in the social network.

It is also referred to as the homogeneous Bernoulli model.

In this case, the normalizing constant is

c(θ) =
N∑
s=0

(
N

s

)
exp(θs/N) = (1 + exp(θ/N))N

The mean value parameterization for the model is:

µ ≡ µ(θ) = Eθ(D(y)) =
exp(θ)

1 + exp(θ)
,

representing the probability that an tie exists from a given actor to another given actor. It

follows that

θ = log(
µ

1− µ
),

is the (common) log-odds that a given directed pair have a tie. So, for the Rényi-Erdős model,

we find that the natural parameter θ is a simple function of the mean value parameter, and

vice versa.

The gradient or rate of change in θ as a function of µ is [µ(1−µ)]−1, which is unbounded

as the probability approaches 0 or 1. The rate of change in µ as function of θ is equal to

exp(θ)/(1 + exp(θ))2 which can be re-expressed as µ(1 − µ), the variance of the number

of arcs under the binomial distribution with constant tie probability µ. Thus, the rate of

change in the mean value parameterization is bounded between zero and one-quarter and is

a (quadratic) function of the network density.

Although it is only in special cases that such a clear relation between the natural and mean

value parameterization exists, it can be helpful in understanding the differences between

them.

For any given model, both parameterizations can be considered simultaneously. The

issues raised by each are similar to those raised by the choice of parameterization for log-

linear analysis: log-linear verses marginal parameterizations. See Agresti (2002), section

11.2.5 for details.
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2.2 Inference for Exponential Family Random Graph Models

As we have specified the full joint distribution of the network through (1), it is natural

to conduct inference within the likelihood framework (Besag, 1975; Geyer and Thompson,

1992). For economy of notation, differentiating the loglikelihood function:

`(η; y) ≡ log [Pη,Y(Y = y)] = η · Z(y)− log [c(η,Y)] (3)

shows that the maximum likelihood estimate η̂ satisfies

Z(yobs) = Eη̂Z(Y ), (4)

where Z(yobs) is the observed network statistic.

As can be seen from (3), direct calculation of the log-likelihood by enumerating Y is

infeasible for all but the smallest networks. As an alternative, we can approximate the

likelihood equations (4) by replacing the expectations by (weighted) averages over a sample

of networks generated from a known distribution. This procedure is described in Geyer

and Thompson (1992). To generate the sample we use a MCMC algorithm (Geyer and

Thompson, 1992; Snijders, 2002; Handcock, 2002).

Until recently inference for the model (1) has been almost exclusively based on a local

alternative to the likelihood function referred to as the pseudo-likelihood (Strauss and Ikeda,

1990). This was originally motivated by (and developed for) spatial models by Besag (1975).

Consider the conditional formulation of the model (1):

logit[Pη(Yij = 1|Y c
ij = ycij)] = η · δ(ycij) y ∈ Y (5)

where δ(ycij) = Z(y+
ij) − Z(y−ij), the change in Z(y) when yij changes from 0 to 1 while the

remainder of the network remains ycij (See Strauss and Ikeda, 1990).

The pseudo-likelihood for the model (1) is:

`P (η; y) ≡ η ·
∑
ij

δ(ycij)yij −
∑
ij

log
[
1 + exp(η·δ(ycij))

]
(6)

Thus the pseudo-likelihood is algebraically identical to the likelihood for a logistic regression

of the unique elements of the adjacency matrix on the design matrix with ith row δ(ycij)

The value of the MPLE can then be expediently found by using logistic regression as a

computational device. Importantly, the value of the maximum likelihood estimator for the

logistic regression will also be the maximum pseudo-likelihood estimator. Note, however,

that the other characteristics of the maximum likelihood estimator do not necessarily carry

over. In particular, the standard errors of the estimates of θ from the logistic regression will

not be appropriate for the MPLE. While in common use (Wasserman and Pattison, 1996;
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Anderson et al., 1999), the statistical properties of pseudo-likelihood estimators for social

networks are poorly understood.

As a second alternative we propose a method to reduce the bias of the MPLE. The method

was originally proposed by Firth (1993) as a general approach to reducing the asymptotic bias

of maximum likelihood estimates by penalizing the likelihood function. The bias-corrected

pseudo-likelihood for the model (1) is then defined as:

`BP (η; y) ≡ `P (η; y) +
1

2
log |I(η)| (7)

where I(η) denotes the expected Fisher information matrix for the formal logistic model

underlying the pseudo-likelihood evaluated at η. We refer to the estimator that maximizes

`BP (η; yobs) as the maximum bias-corrected pseudo-likelihood estimator (MBLE). Heinze

and Schemper (2002) showed that Firth’s method is particularly useful in rare-events lo-

gistic regression where infinite parameter estimates may result because of so called (quasi-)

separation, the situation where successes and failures are perfectly separated by one covari-

ate or by a linear combination of covariates. This is the manifestation of the computational

degeneracy discussed by Handcock (2003).

Computationally, inference under the mean value parameterization is similar to inference

under the natural parameterization. While the point estimator is trivial, obtaining high

quality measures of uncertainty of the estimator appears to require a MCMC procedure.

Note, however, that they can be directly obtained as a byproduct in the MCMC estimation

procedure used to estimate the natural parameters.

3 Study design

Given the limited knowledge of the relative behavior of the MLE and the two maximum

pseudolikelihood procedures, we compare them in multiple ways. We investigate bias and

efficiency in terms of mean-squared error of the natural and mean value parameter estimates.

We also compare the estimates of the standard errors, and the coverage properties of the

nominal Wald confidence intervals based on the estimates.

We aim to consider many characteristics of the procedures in depth for a specific model,

rather than directly compare the point estimates over many data sets. While the latter ap-

proach has value, as demonstrated by Lubbers and Snijders (2006), fixing on a model used

to represent a realistic data-set enables the study to focus on the many characteristics of the

procedures themselves (rather than just their point estimates). This limits the generalizabil-

ity of this study in terms of range of models, but increases the generalizability in terms of

the range of characteristics of the procedures.
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The Lazega (2001) undirected collaboration network of 36 law firm partners is used as

the basis for the study. The first step is to consider a well fitting model for the data.

We focus on one with seven parameters. Typical for the ERG model are the structural

parameters, related to network statistics, here the number of edges (essentially the density)

and the geometrically weighted edgewise shared partner statistic (denoted by GWESP), a

measure of the transitivity structure in the network. Two nodal attributes are used: seniority

(ranknumber/36) and practice (corporate or litigation). Three dyadic homophily attributes

are used: practice, gender (3 of the 36 lawyers are female) and office (3 different locations of

different size). This is Model 2 in Hunter and Handcock (2006). The model has been slightly

reparameterized by replacing the alternating k-triangle term with the GWESP statistic. The

scale parameter for the GWESP term fixed at its optimal value (0.7781). (See Hunter and

Handcock, 2006, for details). A summary of the MLE parameters used is given in column two

of Table 1. Note that we are taking these parameters as “truth” and considering networks

produced by this model.

In the next step 1000 networks are simulated from this choice of the parameters. For

these networks, the MLE, MPLE and MBLE are obtained using statnet (Handcock et al.,

2003), both for the natural parameterization and for the mean value parameterization (see

Handcock, 2003). One sampled network has observed statistics residing on the edge of the

convex hull of the sample space. This network is computational degenerate in the sense of

Handcock (2003). For such networks the natural parameter MLEs and MPLEs are known

to be infinite and their values were not included in the numerical summaries.

The mean value parameters are a function of the natural parameters. Their values are

estimated by simulating networks from the natural parameter estimates and computing the

mean sufficient statistics over those samples. The bias of each procedure is the difference

between the mean parameter estimate over 999 samples and the true parameter values from

which the networks were sampled. Similarly, the standard deviation of each procedure is

simply the standard deviation of the parameter values over all samples. The mean squared

error, used to compute relative efficiency, is the mean of the squared difference between the

parameter estimates and the true parameters.

Estimates of the standard errors are based on the curvature of the log-likelihood (or

log-pseudo-likelihood), which we call the “perceived” standard errors. This is because these

are the values formally derived as the standard approximations to the true standard errors

from asymptotic arguments that have not been justified for these models. These expressions

are typically used in the standard software (Handcock et al., 2003; Boer et al., 2003).1

1Note that since the sample is generated from the MLE fit to the original network, the “perceived”
standard errors from that model should be the same as the “actual” standard errors across our sample.
Examining these values (see Table 3) shows that they are, in fact, the same up to MCMC uncertainty.
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Furthermore, “perceived” confidence intervals are computed based on the Wald statistic

with presumed t distribution on 60 degrees of freedom. These perceived confidence intervals

have nominal coverage of 95%.

Based on the geometry of the likelihood of the exponential family models, the perceived

covariance of the mean value parameter estimates is computed from the inverse of the per-

ceived covariance of the natural parameters estimates (Barndorff-Nielsen, 1978).

To investigate the change in relative performance with higher dependence, another set of

networks with higher dependence is considered. Dependence is conceptualized in terms of

the observed GWESP statistic, as compared to its expected value in the dyad independent

graph with a GWESP natural parameter of 0. The original network has GWESP statistic

190.3. Fitting the model to the network omitting the GWESP term gives a GWESP mean

value parameter of 136.4, implying that 53.9 units of GWESP are induced by the dependence

structure of the original network. From this perspective, increasing dependence by 100×α
percent can be represented by a model with mean value GWESP parameter 190.3 + α53.9

with the mean value parameters of the other terms unchanged.

Increasing the dependence in the network also increases the problem of degeneracy. Dou-

bling the dependence (α = 1), and even adding half of the dependence (α = .5) both result

in degenerate models with an unacceptable proportion of probability mass on very high den-

sity and very low density graphs. Therefore, the higher dependency model considered adds

one quarter of the dependence in the original (α = .25). An additional 1000 networks are

sampled from this model, and fit with each of the three methods considered. In this case, two

sampled networks were computationally degenerate and were not included in the numerical

summaries due to infinite MLEs and MPLEs.

4 Results

The properties of the original model’s natural parameter estimates under maximum like-

lihood (MLE), maximum pseudo-likelihood (MPLE) and maximum pseudo-likelihood with

Firth’s bias-correction penalty (MBLE) are summarized in Table 1. The bias and standard

deviation are presented in percentages of the true natural parameter values. For almost all

terms, the MLE bias is largest, followed by MPLE, and then MBLE. The MLE standard

deviations, however, are the smallest of the three for all terms, with MBLE slightly smaller

than MPLE. The standard deviations are typically larger than the bias, and therefore the

efficiency, defined as the ratio of the mean squared error (MSE) of the MPLE and MBLE

to the MLE is never larger than 1. The efficiencies of the MPLE and MBLE are lowest for

the GWESP parameter, which is meant to capture the dependence in the network. Due to
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the smaller bias of the MBLE, it outperforms the MPLE in efficiency. In one case, the case

of homophily on office, the bias of the MLE is large enough that the relative efficiency of

MBLE compared to MLE is 1.

Table 1: Bias and standard deviation of MLE, MPLE, and MBLE of ERG model natural
parameters as percentages of true parameter values and efficiency of MPLE and MBLE with
respect to MLE

natural true bias (percentage) std. dev. (percentage) efficiency
parameter value MLE MPLE MBLE MLE MPLE MBLE MPLE MBLE
structural
edges −6.51 −2.9 −3.2 −0.7 10.2 11.4 10.9 0.80 0.94
GWESP 0.90 −5.2 1.8 −0.7 17.4 22.7 22.0 0.64 0.68
nodal
seniority 0.85 11.3 4.2 1.9 32.2 36.2 35.4 0.87 0.92
practice 0.41 16.5 5.1 2.5 35.5 40.8 39.7 0.91 0.96
homophily
practice 0.76 −0.7 0.1 −1.5 28.8 30.1 29.3 0.91 0.96
gender 0.70 12.1 9.0 4.0 43.4 49.2 47.0 0.81 0.91
office 1.15 6.3 3.6 1.2 19.7 21.2 20.6 0.92 1.00

Table 2 is the mean value parameterization analog of Table 1. Here, a different bias

ranking of the three estimators is consistent for all parameters: The MLE is approximately

unbiased, and the MBLE is much better than MPLE. By definition, the MLE of the mean

value parameterization is unbiased. The deviations from 0 observed in Table 2 are an indi-

cation of the computational uncertainty due to the MCMC algorithm. The much larger bias

of the MPLE provides an indication that maximum pseudo likelihood estimation does not

perform very well in replicating the original network statistics. The negative bias implies

underestimation of the observed network statistics, which is, to a lesser extent, also true for

MBLE estimation. The standard deviation of the MLE estimates are also smaller than the

other two by a factor of about 2. Consequently, the efficiencies of MPLE and MBLE are

quite low with respect to estimating the mean value parameters.

Table 3 provides the mean of the perceived standard errors over the network samples.

For the MLE they are slightly smaller than the sampling standard deviations (reported in

Table 1), whereas the standard errors for MPLE and MBLE are larger, except for GWESP.

The perceived confidence intervals appear to work rather well for the MLE, with coverage

rates quite close to the nominal 95%. The inaccuracy of the standard errors of MPLE and

MBLE is apparent in their approximate coverage rates, which are too high for all param-

eters except the GWESP term whose coverage percentage is too small. This means that

the standard errors for the structural dependence term are underestimated while they are

overestimated for the nodal and dyadic attribute terms.
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Table 2: Bias and standard deviation of MLE, MPLE, and MBLE of mean value ERG model
parameters as percentages of true parameter values and efficiency of MPLE and MBLE with
respect to MLE

mean value true bias (percentage) std. dev. (percentage) efficiency
parameter value MLE MPLE MBLE MLE MPLE MBLE MPLE MBLE
structural
edges 115.00 0.4 −12.2 −3.6 14.4 29.1 26.4 0.21 0.29
GWESP 190.31 0.6 −13.4 −3.3 19.5 34.4 32.1 0.28 0.37
nodal
seniority 130.19 0.5 −12.5 −4.0 14.8 29.5 26.7 0.22 0.30
practice 129.00 0.4 −13.1 −6.3 13.9 29.0 25.8 0.19 0.27
homophily
practice 72.00 0.0 −11.5 −3.7 15.0 29.0 26.3 0.23 0.32
gender 99.00 0.6 −11.9 −3.5 15.3 29.7 27.1 0.23 0.31
office 85.00 0.3 −11.9 −4.4 15.0 29.3 26.3 0.23 0.32

Mean perceived standard errors and coverage rates for the mean value parameter esti-

mates are reported in Table 4. Again, the perceived standard errors for the MLE and actual

sampling standard deviations in Table 2 are very close, resulting in coverage percentages

close to 95%. The perceived standard errors for the MPLE and MBLE, however, are far

too small, at around 1
3

of the sampling standard deviations, resulting in coverage rates just

above 50% for nominal 95% intervals.

Tables 5 through 8 report the results for the ERG model with increased dependence. We

discuss these results in comparison to the results for the original model. The bias in the

natural parameterization, shown in Table 5 is of similar size as in the original model. The

standard deviations of the natural parameter estimates also do not show dramatic changes for

all estimation methods. They are slightly decreased for the structural parameter estimates,

and slightly increased for the attribute parameters, causing the relative efficiencies of the

MPLE and MBLE with respect to the MLE to fall substantially for most parameters, to less

than .8 for most MPLE estimates, less than .9 for most MBLE estimates, and a mere .50 and

.55 respectively for the GWESP estimates. The perceived standard errors and coverage rates

for the natural parameters are similar to those for the original model, with slightly larger

perceived standard errors and nearly identical coverage rates. For the MLE parameters the

perceived standard errors appear to be too high, although this does not lead to too high

coverage rates.

The bias observed in the mean value parameterization, in Table 6 is larger by at least a

factor of two, resulting in a considerable bias for both the MPLE and MBLE estimates.

The sampling standard deviations are also larger in the increased dependence model,

with about a 50% increase over the original model. With higher bias, and higher standard
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Table 3: Perceived standard errors of MLE, MPLE, and MBLE of natural ERG model
parameters as percentage of the true parameter values and coverage rates of the perceived
confidence intervals.

natural SE (percentage) coverage percentage
parameter MLE MPLE MBLE MLE MPLE MBLE
structural
edges 9.6 13.2 12.9 94.9 97.5 98.0
GWESP 17.2 13.3 13.0 92.7 74.6 74.1
nodal
seniority 30.6 44.4 43.9 94.4 97.8 98.0
practice 32.5 47.6 47.0 94.0 98.1 98.6
homophily
practice 27.4 34.5 34.1 94.8 98.1 98.1
gender 40.1 57.8 57.0 95.8 98.7 98.8
office 18.4 25.4 25.1 94.2 98.1 98.4

deviations, it is not surprising that the relative efficiencies of the MPLE and MBLE estimates

are smaller in the model with increased dependence. The pseudo-likelihood estimators do

not reach even 25% of the efficiency of the MLE for any of the terms. The perceived standard

errors for the mean value parameterizations are larger for the MLE compared to Table 4,

but are too small compared to the sampling standard deviations in Table 6. Surprisingly,

the perceived standard errors are smaller for both the MPLE and MBLE, as compared to

the original model, so even more underestimated. Therefore, the coverage rates drop for all

three estimators, MLE to about 85%, while MPLE and MBLE fall to about 30% coverage

for a nominal 95% interval.

5 Discussion

This case study comparing the quality of maximum likelihood and two maximum pseudo-

likelihood estimators confirms that maximum likelihood estimation out-performs maximum

pseudo-likelihood estimation on a number of measures, for structural and covariate effects.

In a dyad independent model, such as the one in this study with the GWESP param-

eter removed, the MLE and MPLE would be identical, while the MBLE would be a slight

modification of these to reduce the bias of the natural parameter estimates. In the full dyad

dependent model considered here, the MLE is able to appropriately deal with the depen-

dence term, while the MPLE and MBLE can only approximate the dependence pattern.

Therefore, it is not surprising that the MLE out-performs the pseudo-likelihood methods to

the greatest degree in the estimation of the GWESP natural parameter, in terms of both
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Table 4: Perceived standard errors of MLE, MPLE, and MBLE of mean value ERG model
parameters as percentage of the true parameter values and coverage rates of the perceived
confidence intervals.

mean value SE (percentage) coverage percentage
parameter MLE MPLE MBLE MLE MPLE MBLE
structural
edges 13.5 6.9 7.0 93.1 44.9 49.4
GWESP 18.4 12.1 12.2 91.4 56.7 62.7
nodal
seniority 13.9 7.1 7.2 91.6 45.5 49.0
practice 13.1 7.9 8.0 93.2 51.0 57.9
homophily
practice 14.1 8.3 8.4 92.6 52.0 57.1
gender 14.4 7.4 7.5 92.0 46.5 51.6
office 14.2 7.6 7.7 92.5 50.2 54.4

efficiency and coverage rates. The inferior performance of the MPLE and MBLE natural

parameters for the nodal and dyadic attribute terms results from the dependence between

the GWESP estimates and the estimates for other model terms. Greater variability in the

GWESP results in greater variability in other parameters. This uncertainty also leads to

inflated variance estimates for the other parameters, contributing to inflated coverage rates

of nominal confidence intervals, whereas the GWESP perceived standard errors are under-

estimated, resulting in too low coverage rates. Therefore, the notion that inference based

on the pseudo-likelihood is problematic are confirmed, where pseudo-likelihood based tests

for the structural parameters tend to be liberal, and for the nodal and dyadic attributes

conservative. A similar pattern appears to hold for the Lubbers and Snijders (2006) study

(see their Figure 2).

As a transformation of the full set of natural parameters, the mean value parameterization

is even more conducive to uncertainty in the dependence term decreasing performance on all

terms. In addition, the MLE is constructed to be unbiased in the mean value parameters.

Together, these two effects contribute to the drastically superior performance of the MLE on

the mean value scale. The pseudo-likelihood methods show about 3 times the mean squared

error as the MLE, and the perceived coverage rates of nominal 95% confidence intervals

hover around 50%. In the model with increased dependence, these effects are even stronger,

with relative efficiency below .25 and coverage rates below 40%.

The MBLE is constructed to correct for the bias of the MPLE on the natural parameter

scale. It does, in fact, show the smallest bias for the natural parameter estimates. In the

case of the practice homophily term, this correction is helpful enough to give MBLE a mean

squared error at least as good as that of the MLE.

12



Table 5: Bias and standard deviation of MLE, MPLE, and MBLE of ERG model natural
parameters as percentages of true parameter values and efficiency of MPLE and MBLE with
respect to MLE, with increased dependence

natural true bias (percentage) std. dev. (percentage) efficiency
parameter value MLE MPLE MBLE MLE MPLE MBLE MPLE MBLE
structural
edges −6.96 −2.3 −4.0 −1.0 9.7 11.7 11.1 0.66 0.80
GWESP 1.21 −4.3 2.7 −0.2 14.4 21.1 20.2 0.50 0.55
nodal
seniority 0.78 11.1 5.9 3.3 36.0 42.2 41.1 0.78 0.83
practice 0.35 18.2 5.9 2.8 39.9 51.4 49.8 0.72 0.77
homophily
practice 0.76 −1.0 2.1 0.1 30.8 31.8 30.8 0.94 1.01
gender 0.66 11.3 8.1 2.8 46.3 53.3 51.1 0.78 0.86
office 1.08 6.9 3.7 0.9 20.4 23.9 23.1 0.79 0.87

Table 6: Bias and standard deviation of MLE, MPLE, and MBLE of mean value ERG model
parameters as percentages of true parameter values and efficiency of MPLE and MBLE with
respect to MLE, with increased dependence

mean value true bias (percentage) std. dev. (percentage) efficiency
parameter value MLE MPLE MBLE MLE MPLE MBLE MPLE MBLE
structural
edges 115.00 −1.1 −26.5 −13.3 20.3 44.7 43.4 0.15 0.20
GWESP 203.79 −1.3 −27.9 −13.4 24.5 49.0 48.2 0.19 0.24
nodal
seniority 130.19 −1.2 −26.7 −13.6 21.3 45.0 43.6 0.17 0.22
practice 129.00 −0.9 −27.8 −17.1 17.6 43.1 41.0 0.12 0.16
homophily
practice 72.00 −1.2 −24.8 −12.4 19.5 44.4 42.9 0.15 0.19
gender 99.00 −1.1 −26.4 −13.4 21.6 45.3 44.1 0.17 0.22
office 85.00 −1.0 −26.9 −14.8 20.2 44.5 42.6 0.15 0.20

Although the main point of this paper is to compare the MLE to the pseudo-likelihood

methods, it is worth noting that the MBLE consistently out-performs the MPLE in these

analyses. The original intent of the method was to reduce the bias of the natural parameter

estimates, and it is successful here. However the MBLE also reduces the bias of the mean

value parameter estimates relative to the MPLE. Intuitively this is because of the large bias

in the mean value parameterizations of the MPLE, and impact of the penalty term jointly

on all parameters.

As an illustration, in Figure 1 the MLE, MPLE and MBLE mean values for the edges

are plotted (in deviation from the number of edges in the original network), for the networks

sampled from the original network (top two panels) and for the sampled networks with

increased dependence (the two panels at the bottom). Given that the MLE is unbiased (apart

13



Table 7: Perceived standard errors of MLE, MPLE, and MBLE of natural ERG model
parameters as percentage of the true parameter values and coverage rates of the perceived
confidence intervals, with increased dependence.

natural SE (percentage) coverage percentage
parameter MLE MPLE MBLE MLE MPLE MBLE
structural
edges 14.9 13.9 13.6 96.4 98.2 98.2
GWESP 19.5 12.4 12.1 94.2 78.8 77.6
nodal
seniority 47.8 53.2 52.4 95.4 98.4 98.7
practice 49.0 61.4 60.5 95.5 98.4 98.8
homophily
practice 40.9 37.4 36.8 94.6 97.9 98.0
gender 65.7 66.4 65.3 95.3 98.1 98.8
office 26.9 29.3 28.8 95.1 98.2 98.4

from sampling error), the top left panel demonstrates that although the MPLE and MLE are

close for many sampled networks, the MPLE underestimates the edge parameter for many

other networks, and that it has a larger variance than the MLE with a far less symmetric

distribution. The line in the panel indicates the 75% density region, around the x = y line.

The remaining points seem to clutter at the bottom of the panel, indicating that MPLE

may result in networks with (extremely) low edges, for non-extreme MLE values. From the

top right panel, where MPLE is plotted against MBLE, it is clear that the bias correction

of MBLE corrects for some, but not all, of this underestimation. Most of the correction

occurs for networks with (extremely) low edge MPLE. The degree of underestimation and of

correction are greater in the increased dependence model, shown in the bottom two panels.

The density lines in the left panel show a substantively larger cluttering of extremely low

MPLE edge parameters. Plots for MBLE vs. MLE (not shown) are very similar to those for

MPLE vs. MLE.

The study results are slightly conservative in favor of the MPLE and MBLE as the

MLE results include the additional computational uncertainty of the MCMC algorithm to

estimate the MLE. In the case of the bias of mean value parameter MLEs, which are known

to be 0, computational biases are intentionally left in place to represent the performance of

the estimators as they might be used in practice. The one deviation from this principle is

the exclusion of three “degenerate” sample networks (with observed sufficient statistics at

the edges of their possible range), one from the original model and two from the increased

dependence model, from the final analysis.

It is worthwhile noting that computational complexity provides another potential differ-
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Table 8: Perceived standard errors of MLE, MPLE, and MBLE of mean value ERG model
parameters as percentage of the true parameter values and coverage rates of the perceived
confidence intervals, with increased dependence.

mean value SE (percentage) coverage percentage
parameter MLE MPLE MBLE MLE MPLE MBLE
structural
edges 17.1 6.5 6.6 85.5 23.8 28.5
GWESP 20.7 10.4 10.5 85.9 31.3 36.6
nodal
seniority 17.6 6.7 6.8 84.4 22.8 27.6
practice 16.0 7.5 7.6 89.9 35.9 39.3
homophily
practice 17.2 7.8 7.8 89.7 31.1 37.3
gender 18.0 7.0 7.0 84.8 22.7 28.5
office 17.4 7.2 7.2 87.8 27.0 32.3

ence between partial and maximum likelihood estimation. In fact, this is one reason MPLE

estimation has been used for so long. Recent advances in computing power and in algorithms

has made MLE a feasible alternative for most applications(Geyer and Thompson, 1992; Sni-

jders, 2002; Hunter and Handcock, 2006). In the Appendix more details about computing

time and other computational aspects can be found.

To further investigate differences in the effect of the estimation method on structural and

covariate parameters, it would have been good to study a simple triangle model (as Corander

et al., 1998, 2002). Unfortunately, this model is degenerate for the Lazega data, providing

further evidence that the triangle model may often be too crude to be useful in realistic

settings. Corander et al. (1998, 2002) avoid the problem of degeneracy by considering only

graphs with a fixed number of edges. The GWESP terms has a similar motivation and fits

well on the same data.

We have used standard error estimates from the inverse of the Hessian to compute con-

fidence intervals and coverage rates. We take this approach because these standard error

estimates are often used to compute Wald-type confidence intervals and for testing purposes.

It is important to remember, however, that we have no asymptotic justification for this ap-

proach for models with structural dependence. It might well be the case that this approach

leads to worse results in networks with increased dependence, as was found in underestimated

perceived standard errors for all mean value parameters (see Table 8). Lack of normality

could be another (partial) explanation, in view of the deteriorated coverage rates.

Note that exact testing is an alternative to the Wald approximation (Besag, 2000). To

determine an exact p−value for a coefficient, for example, simulate from the model condi-
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tional on the observed values of the statistics in the model and omitting the target statistic.

The p−value is then based on the quantile of the observed target statistic among those from

the sampled networks. While this approach is feasible, it is usually prohibitively expensive

computationally.

Summarizing the main findings of our study, we can make three practical recommenda-

tions, in addition to the overall conclusion that it is always better to use MLE than MBLE

than MPLE. First, if MLE is not feasible, MBLE is to be preferred over MPLE. Second,

if one’s main interest is in investigating nodal and dyadic attribute effects, MBLE/MPLE

can be useful as a first selection criterion, especially in the natural parameterization, where

the bias is reasonably low. We strongly recommend, however, to check any (candidate) final

model using MLE, in view of the too liberal tests provided by MPLE/MBLE. For a serious

investigation of structural dependence effects, MPLE/MBLE is not recommended. Third, it

can be worthwhile to also consider the mean value parameterization to obtain more insight

in directly observable and interpretable network characteristics and statistics.

In view of the specificity of the models investigated in this study, we realize that these rec-

ommendations may be of limited value. Therefore, as a final recommendation, we encourage

further comparison of maximum likelihood estimation to (bias-corrected) pseudo-likelihood

estimation in other applications. To this purpose, we have made available the code used in

this study on the statnet website (see the Appendix for further technical details).
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A Computational Details

All computations were done using the statnet (Handcock et al., 2003) package in the R

statistical language (R Development Core Team, 2006). The package is freely available

for download at http://www.csde.washington.edu/statnet and detailed instructions are

given there. All estimates are based on the ergm function, with various optional arguments.

The arguments used are listed in Table 9, and their function is described. Much of this

description can be found in Handcock et al. (2003).

Sample networks were fit with two or more successive calls to ergm, with arguments

listed in the first column of arguments in Table 9. The first two rounds of model-fitting

were used for all models. Then, a check for convergence was performed: if the mean value

parameter estimate for the edges term had error greater than 5 edges, the fit was deemed

not sufficiently converged and the third round of model-fitting was repeated until the mean

value edges term was accurate within 5 edges.

The models are fit using MCMC according to some model parameters, and the theta0

argument specifies the starting parameter values. Hunter and Handcock (2006) discuss the

important role played by starting parameter values in fitting complex ERG models. The

statnet default is to use the MPLE fit to begin the MLE fit. This approach was used for

the samples from the original model. The increased dependence samples, however, were more

difficult to fit, so the MPLE estimate proved to be too far from the MLE to lead consistently

to converged estimates over large numbers of sampled networks. Two modifications were

introduced to address this problem. First, the initial parameter estimates were computed by

adding 90% of the MPLE estimate to 10% of the model parameters from the original model.

This had the effect of providing some correction in cases where the MPLE estimates were

very far from the MLE. Second, the model fit was accomplished using two ergm calls. The

first was less precise and with smaller sample size, and aimed at producing a rough initial

set of parameter estimates closer to the MLE than its original values. The second ergm

call was started at the estimate produced by the first, and involved a larger sample size in

the interest of producing a more precise final set of parameter estimates. Note that these

sophistications robustify the estimation of the MLE for the purposes of automation over the

1000 networks, but do not effect the ultimate MLE itself. Based on the results of this study

we will use the MBLE estimate as the default in statnet.

Given the starting values, the Markov Chain must be created by selecting new proposed

sample networks as the basis of the Metropolis-Hastings algorithm. The proposaltype

argument determines how such new networks are selected. All ergm calls in these fits used

the statnet default randomtoggle value of this argument, which selects a dyad at random
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and evaluates the likelihood ratio of the network with and without a tie in the selected dyad.

The interval argument determines the number of Markov Chain steps between suc-

cessive samples. The burnin argument determines the number of initial samples discarded

to avoid any possible bias of the original network. And the MCMCsamplesize argument

determines the total number of samples taken.

Once the sample is completed, the curvature of the MCMC approximation to the likeli-

hood is evaluated and an MCMC-MLE estimate is produced. This estimate was obtained,

however, based on a sample from parameter values potentially quite far from the true MLE,

so it was potentially inefficient. With a new, improved MLE estimate in hand, it is possible

to produce an additional sample based on this estimate to greatly refine the estimate. The

statnet argument maxit does just this: it specifies the number of times an estimate should

be produced, with each successive estimate based on a sample from the previous estimate.

The final argument steplength modifies the Newton-Raphson optimization of the Monte

Carlo approximation to the likelihood to account for the uncertainty in the approximation

to the actual likelihood. The value is a between 0 and 1 and indicates how much of the step

toward the estimated optimum is taken at each iteration.

Table 9: Arguments to statnet function ergm used to compute MLE.

Argument First Round Second Round Third Round
theta0 .9 truth + .1 MPLE prior fit prior fit
proposaltype toggle toggle toggle
interval 2000 3000 3000
burnin 500000 500000 500000
MCMCsamplesize 5000 10000 5000
maxit 2 2 4
steplength .7 .7 .5
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