Seminar Abstract

Yu-Chin Chen

Forecasting Commodity Prices with Mixed-Frequency Data: An OLS-Based Generalized ADL Approach

Time: 12:30 pm on Wednesday, February 22, 2012
Place: Savery 409

This paper presents a generalized autoregressive distributed lag (GADL) model for conducting regression estimations that involve mixed-frequency data. As an example, we show that daily asset market information - currency and equity market movements - can produce forecasts of quarterly commodity price changes that are superior to those in the previous research. Following the traditional ADL literature, our estimation strategy relies on a Vandermonde matrix to parameterize the weighting functions for higher-frequency observations. Accordingly, inferences can be obtained using ordinary least squares principles without Kalman filtering, non-linear optimizations, or additional restrictions on the parameters. Our findings provide an easy-to-use method for conducting mixed data-sampling analysis as well as for forecasting world commodity price movements.


To request disability accommodations, contact the Office of the ADA Coordinator ten days in advance of the event. 543-6450 (voice) 685-3885 (FAX) 543-6452 (TDD) access@u.washington.edu